Climate Change

The Perfect Storm?

MDGs

(Societal Failures)

Biodiversity & MDG Targets already a huge challenge... - now add cumulative *Climate Change*....

BIODIVERSITY LOSS &

ECOSYSTEM SERVICES

"...fixing carbon in soils is one of the few practical means we currently have to actually reduce global atmospheric CO2 **levels**. Building up soil organic matter is a win-win situation for the fight against climate change as well as soil health and crop yields, and must become the focus of farmers everywhere" Rattal Lal

what we do as a society, in the next 5 years, will likely resonate for all life on earth over the next 10 000 years

CLIMATE

CHANGE

Carbon Cycle

The oceans and soil are the biggest carbon storage reserves

CCA and SCA/ CRA

- CSA is agriculture that sustainably increases productivity, resilience (adaptation), reduces/removes GHGs (mitigation) and enhances achievement of national food security and development goals (FAO 2010)
- It happens at multiple levels, global, national, regional and local.

Assessing CRA

Adaptation

Altering exposure	Reducing Sensitivity	Improving adaptive capacity
 Assess impacts and map 	 Develop or adopt suitable 	 Develop adaptive strategies
hazard zones	crop, plant and animal	and action plans
 Conduct proper land and 	varieties	 Diversify sources of
wateruse planning	 Improve irrigation and 	household income
 Protect watersheds and 	drainage systems	 Improve water and other
establish flood retention zones	 Diversify cropping and 	infrastructure systems
 Change cropping patterns 	agricultural activities	 Establish disaster and crop
	 Adopt disaster-prevention 	insurance schemes

Mitigation

NCO2

 ▶ rate of deforestation and forest degradation,
 ↗ adoption of improved cropland management
 practices (soil conservation)

SCH4, N20

improved animal production and management of livestock waste, more efficient management of irrigation water on rice paddies, improved nutrient management on cropland

7 Sequestering carbon

restoration of degraded soil, increased organic matter inputs to cropland, improved forest management practices, afforestation and reforestation, agro-forestry, improved grasslands management

	Conventional Agricultural	limate Smart Agriculture		
•	Conversion of energy sources from human to fossil fuel dependent •Energy machinery.	 Use of energy efficient technologies for agricultural power (irrigation or tillage). 		
•	Increased use of fertilizer, pesticides and herbicides (dependent on fossil •Inputs fuels) generally very inefficiently	 Increased efficiency of fertilizer /inputs and wider use of organic fertilizer. 		
•	Expansion of agricultural land area •Land use through deforestation and conversion from grasslands to cropland.	 Intensification on existing land as main source of production increase rather than expansion to new areas. 		
•	Increased specialization in ag production and marketing systems. •System	 Greater diversification in production, input and output marketing systems. 		
•	Emphasizing improved and hybrid •Varieties	 Valuing the resilience of traditional varieties 		

itselt

Soil Health: The continued capacity of the soil to function as a vital living ecosystem that sustains plants, animals and humans. Soil Renaissance Plan, USDA

Soils

These different types of organisms:

- Help to control insect pests, weeds and plant diseases
- Form beneficial symbiotic relationships with plant roots
- **Recycle** plant nutrients from soil organic matter and minerals back to roots and

SOM composition; Carbon = 42%, Oxygen = 42%, Hydrogen = 8%, Ash = 8%, Macronutrients (N, P, K, S, Ca, Mg), Micronutrients (Fe, Mn, B, Zn, Cu, Cl, Co, Mo, Ni)

Improve soil structure

Functions Ascribed to SOM & Interactions:

Effects of Soil Organic Matter

- Improves soil biology
- Increase water holding capacity
- Improves soil fertility (cation exchange capacity)
- improves soil structure
 - provides crumb structure that resists compaction
- decreases bulk density
- increases pore space
- increases oxygen diffusion rate

How much organic matter is needed?

- As a guide, an additional 10 t/ha of organic matter would be required each year for 10 years to increase SOM by 1%,
- or more realistically in current farming systems 2 t/ha each year for 20 years to achieve a 0.5% increase

Guide to Residue Cover.									
Residue Cover %	20	30	40	50	60	70	80	90	95
Cereal Straw kg/ha	400	500	800	1000	1300	1700	2200	3000	4000

Table 5. Residue Cover and Residue Weight Ontario Ministry of Agriculture and Food, 1992

Who is living in 1 cubic meter of topsoil?

Who's living in the top 3 m3 of soil?

Estimated Carbon-to-Nitrogen Ratios				
Browns = High Carbon	C:N			
Ashes, wood	25:1			
Cardboard, shredded	350:1			
Corn stalks	75:1			
Fruit waste	35:1			
Leaves	60:1			
Newspaper, shredded	175:1			
Peanut shells	35:1			
Pine needles	80:1			
Sawdust	325:1			
Straw	75:1			
Wood chips	400:1			
Greens = High Nitrogen	C:N			
Alfalfa	12:1			
Clover	23:1			
Coffee grounds	20:1			
Food waste	20:1			
Garden waste	30:1			
Grass clippings	20:1			
Нау	25:1			
Manures	15:1			
Seaweed	19:1			
Vegetable scraps	25:1			
Weeds	30:1			

C:N ratio of compost is around 30:1

GROP RESIDUES EFFECTS and STRATIFICATION

ACTIVE ZONE OF DECOMPOSITION

ACTIVE ZONE OF AGGREGATION

AGGREGATES FORMATION

Sá. 2001

Building soil Organic matter (Active and Stable Carbon)

- Although nutrients were more concentrated near the soil surface for millions of years, ecosystems didn't crash, and many became increasingly robust over millennia.
- Stratification is normal.

The root-hyphae net

An undisturbed soil covered by plant residues encourages the formation of mycorrhizae, the beneficial association of certain fungi with roots that enormously enhances the nutrient-gathering

ability of many crop plants.

Roots, fungal hyphae, and their secretions stabilize soil aggregates and promote good soil structure, thus preventing compaction.

Active vs stable carbon

- Active Organic Carbon are the smaller carbon molecules like sugars that can be readily consumed by microbes and is regarded as microbial food. C:N Ratio important
- Stable carbon is for instance the final decomposed form of lignin – Humus & Humic substances. Can not be readily further decomposed.

Humus

- Like a big sponge, humus can hold up to 90 percent of its weight in water
- Because of its negative charge, many <u>plant nutrients</u> stick to humus (nitrogen, calcium, magnesium, phosphorus, and others), preventing them from washing away and acting as nature's slow release fertilizer
- Humus massively improves soil's structure, making it loose and friable and helping plants root by providing them better access to nutrients, water, and oxygen
- Humus may help "filter" toxic chemicals out of the soil, much like carbon-based water filtration systems filter toxins out of your water

Active Carbon (Particulate OM)

- It responds readily to soil management
- It is a source of food/energy for microorganisms and soil animals as well as nutrients for plant growth.
- Particulate organic matter enhances aggregate stability, water infiltration and soil aeration;
- It increases cation exchange capacity and buffering pH.
- It also binds environmental pollutants such as heavy metals and pesticides.
- Particulate organic matter may play an important role in the suppression of soil borne diseases